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Steady-state Conditions of High-temperature Plasma. A
Pinch in a Longitudinal Magnetic Field.

E. F. Tkalich and V, S. Tkalich

Steady-state conditions of high-temperaturé
plasma are studied in a kinetlc approximation.
We investigate the radial distribution of density,
azimuthal current, and other macroscopic physical
values in a pinch with longitudinal magnetic fleld.

A pinch compressed by the magnetic fleld of its own current was
analyzed on the basis of a kinetic approximation by Bennett [1) and
later by Chyulll and Miku [2]. The investigation of a plasma cylinder
in equilibrium by an outside magnetlc fleld was conducted by Tonks
[3) who studled in detail the possible forms of electron trajectoriles.
Certain steady-state kinetlc problems were examined by Morozov and
Solov'ev [4].

Vlasov [5] formulated the general problem of space-~bounded plasma;
the concept of a plasmold condltion 1s introduced, and a series of
plasmolds are examined with the aid of a distribution function, the
exponential curve index of which 1s quadratlc with respect to velocity.

H. Grad [6] examined the boundary between a noncolliding plasma and

a magnetic fleld in a Cartesian coordinate system, and he studied

TeD-TT-63-373/14+244 -1-



trajectories by means of exact solutiona. One of the authors [7]
studied the steady-state problem of a high-temperature plasma with
the aid of distribution functions which were a generalization of the
Maxwelllan distribution law. 1In this article we will investigate

the steady-state conditions based on distribution functions closely
related to the Maxwelllan structure and we will study the fundamental
macroscoplc characteristics of a pinch in a longitudinal magnetic
field.

1. High-temperature plasma can be described by kinetic equations
without terms which take into account interaction at small distances
[8-11]. Removing Poisson brackets [9, 10, 12] in the kinetic equation
for type k ions in an arbitrary orthogonal system of coordinates [13)

(91, 92, qs), we will obtain

0 -*“ x . 5 ) ' .
Talcl"‘}.i;‘((ﬁi—“{‘.;:o k=1, 2, ... N).

Here N is the number of particle types. Summation with respect to a

1s performed everywhere from 1 to 3 (a =~ 1, 2, 3). Canonical variables

of charged particles in an electromagnetic field - the Hamlltonian

75k and components of total momentum Pkn have the form

. .
' Pt !
(oo ‘-\_ 5,—,";;..:,' -i- e.?, P., = Prg 4= -:—' ’I.A.. Pre = IIIJI: W...
. .

The values ha’ pka, wka are the Lamé coefficient, a component of the
momentum of type k lons, and generallzed velocity, respectively;
¢ and A are electromagnetlc potentials,

Temperature 18 presented as a dispersion of linear velocity [14];
thus, for temperature Tka of type k 1lons in directlion a we will have

the following expression:
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mpTy == (p, = B . (1)

In the future we will call such a problem in which
the basic set of physical values — electrical fleld, magnetic fleld,
distribution runctiOn, and Lame's coefficlents- do not depend_4kon

.time, a steady-state problem. We will call a cyclical coordingééfﬂ.'
one on which the vﬁ;ues of the fundamental composite do not depend.

2. Ve will examine the steady-state problem in which the coordi-
nate qs 18 cyclical. In this case the function of éhe integrals of
symmetry f, = ka“L, Pka) 1s the partial solution of the kinetie
equation. Iet the vector potential have only the third component
depending on the first two coordinates A = A(q;, Qz)es, the electrical
field does not have the third component. Then from Maxwell's
equations we obtain [15] the following system for the determimation
of ¢ and A:

hihhrz-v-az e, [ fdpidp.dpy=0,
- AT N
hhJGAh, A2 N 2 [ f o dp,dp.dpy =0,

o1 ( A Mhyd )

it \ogib oy ™ dqhesies)”
Summation with respect to 1 1s performed everywhere from 1 to N(1 =
=1, 2,..., N, A is the Laplace operator [13].

let the exponent of the distribution function de a linear
Hamiltonian function ?‘k and of momentum Pk,' Then for the distribution

function and density n, we will obtain the following expressions

PN S 1 e w\2 (Pn —m Mo )"
2~ CX —— .~ Py _..P': v ____..._._.__“.
S (2=mx ) P ( 2mp.7',.) [( "1) ' ([.’) t by
1
g == ng, exp (_—il;:'lrg-) ['.’m.e,:_: —2 ¢.: "’twlth — ("""lhc)'] .
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In the future, the values nko and W, will everywhere deslignate

a

constant dimensions of density and of generalized velocity respectively;

Tk is constant in the sense of temperature., With the ald of the

distribution function we will determine the third component of the

ordered velocity Vk.

W= h;:“’t-

(2)

If the exponent of the distribution function 1s a .linear

Hamiltonian function?ﬂ( and quadratic function of momentum Pks’ then

rk and n, have the form

JREAEIYT I ) G

(2.‘-m,17',) I 2"("".
) ( . behy + 20,43 2 A
-~(14-ahy) | 58

T T T ek .‘l.,)

"ra

n =

Vl-o-ul-lu
bikig\e gq
_c_:LA_.;;‘); (1A,_¢‘h§)].

2 exp ( ngtﬁ) [2m_xe.? +(—‘- 4) —_

Here a, and b, are constants. The value 1 + akh: is essentially

k

positive 1in the reglon where there 18 plasma. At the points where A

becomes iInfinity when a, > 0 there will be no plasma; when ak< 0

the plasma accumulates at these points. With the ald of the afore-

mentioned distribution function and Relation (1) we will £ind the

third component of veloclty Vk and temperature 'l‘ka in a selected

direction

boAy 20, A2 50 4
—— €
i S

2my (l + ‘a":'i) g 1 n‘;:. :

(3)

3. We willl examlne the steady-state problem with two cyclical

coordinates qz and ga. The arbltrary functlon of symmetry intcyrals

Ty

-3

= fk(:"fk, L Pkg) 13 a partial solution of the kinetle equation.




If A and ¢ depend only on the first coordinate, then assuming Ay = O,
we will obtain from Maxwell's equations [15] the following system of

equations for determining 9, Az, and As:

Sor Fvan S e[ 1dpidpap, =0,
d ” = [ |« u
g T2 D 2 [ Lpdpdedps =0, e

d eddy 42 O

j/ .P:dpydp.dp;=0. H '

'!
m,

The constant ¢ takes the values 0 and 1 in a Cartesian and c¢cylindrical
system of coordinates respectively; r is elther a Cartesian coordinate
or a distance from the axis of symmetry.

Let the exponent of the distribution function be a linear
function of the Hamiltonian and of momenta. Then for the distribution

function and density we will obtain the following exprgssiona:

= (1 o (P2 oy mw, )
fe Gty &P ( 20-:17':){”“-'- 2} — mw, - ) -+ (Pn — ”) }'
. , . ' m ey cat
ny = e, _?t=;;-'-(?—'—:~’r Ag—'—':—’A;——iz:: )

With the aid of the distribution function we will find the second

and third components of the ordered velocity

Vip=mun s, W= . ( 5)

We will examlne a case where only electrons move, the lons will
be considered as statlonary and cold. The ions play the role of the
background of density n., which compensates the space charge of
electrons. We willl introduce the constants o0, and 03, in the following
manner. In a Carteslan coordinate system oz = g3 = 0. In a cylindri-
cal system 72 = 0, 03 = 1 1n the case of an azimuthal magnetic fleld
(A2 = 0); and 02 = 1, 03 = 0 in the case of a longltudinal magnetie

field (A3 = 0). Substitviing the distribution function in (%) for
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the determination of ¢, Az, and As we will obtain the followihg

system of equations:

1 d 13
e v 5 (rA) —D-L ew,n=0

2 ]
1.d ddy 4= |
[
)

1
r ’
d
i ew;n =0,

1 d .da

. AL TR —— —-
LOw edr " @

(6)
A partial solutior of this system has the form

%
3

=T o (i-o--;- #b),

.o,
ryew,

A=S

9——-{-‘[(1—! Sv)i+-Sv (—-"—l bv)—o—( 217' c,—i-?a,) ]

'__(1__3)_._‘.,,( ) »r—o,ln( .)-
‘c'n.w r;’ 42

2 ""“c'd' *

F_C:—S

. 5

v
()

|

V2Se— --—-nE-O-C)

Here ro 1s a constant of linear dimension; p 1s a dimensionless
coordinate; a and b are dimensionless arbitrary constants; S takes
two values (S = + 1). In the case of a longitudinal magnetic fleld
As = 0O when S =1, a > 0, we will obtain the following class of solu-
tions in which £ 1is finite at a finite p:

v Cea
Az — ,:"T T ), g="" [(1-—-") —-YI!D»FT.;. _r.] .
Y _.n ‘:;('; . ~ ,_‘c —2\'C| _ neln m‘r:
Ciw =2eh? (- a-s,Cimgeh™ o~ Cy voz—

cur‘. .

Let the electrical fleld equal zero. Without lessening the generality,
the direction of electron rotation can be consldered positive

(sign e = —sign w). Then for the magnetic fleld and density we will

obtaln the relations

= H, v (M~ H) thy
W Hon (Ha—=HYy 5 it~ iy ws

BN W . R T CHy—H, (7)
n- s G~y ! F* 4\.‘(.‘;.‘.;4";‘ “\."r ]].';. H;'
R T ooty mee \T

M . - ' W <

inger? * « AP Y Rﬁ
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Here Ro 1s the Debye radius; n, is the maximum density (at the point
p = p,)3 Ho, H,, H, are the values of the magnetic field at the axis
of symmetry, at infinity, and at the point of maximum density re-
spectively. Here the values w, H,, H,  are always positive and do not
vanish; the magnetic field satisfies the inequality

AN

Henceforth, in place of the magnetic field we will examine the
Larmor frequency of electrons (w = —-%% ). Analysis of Relation (7)
shows that the magnetic fieiq is a monotonically increasing function
of the radius. In connection with this the Larmor frequency and
angular velocity w vary within the following limits

0o o, I<w<a,,
If the conditions w < @y < @, are fulfilled, then the density

monotonically increases from the column axis, vanlishing at infinity.
In the case where ap = w the .formulas in (7) take a simple form

H=H,-+(Ho— H)thp, a=n_ ch=%.

If the conditions @g < W< @, (1.e. p,> 0), then the density 1s
maximum when p = p,, and therefore decreases, vanishing at infinity.
In addition, the angular velocity satisfies lnequality g + @ > 2w.
If the average radius of the column is much larger than the thickness
of the plasma layer (R >> 1), then we have the relation

2i0 = wy-1- g,

If the angular veloclity changes within the limits of 0 < 2w < @,
then the magneiic field changes sign. In this case 1t can take
significantly larger values with respect to the modulus.

Expressing the linear density "effective area" and the maximum

density by n,, we will obtain the relation

Se= VR Ha— Hy o

’
- Nl ul,
w ha—-H,* -

.t—«"

Assuming S = mL2, in the case w = @y we Will obtain
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1 __V2C,2cRa
L =Tk

In the case S = 27RL and w = (“® * %) (R >> I) we will obtain’

RL="3E12eRs

‘ 4, In a Cartesian system of coordinates we will examline the
distribution in which the exponent is a linear function of Hamiltonian
7’k and a quadratic function of momenta ’k.’ and Pk;' After identical

transformation, the distribution function and density take the form

Se=nrFe(py Ps P r),
My = e exp ( - 73;7-7) {2"'40: (— %)4‘(2)‘ (A' - AD"'
—(2fa—ar ).
ff‘.a u:.'..:i;:)"; exp{— ERTI“TT) {”2' + ["* (a2 A)+

AR GEET e A) 47 A A BT

The vectors a = (0, aa, as) and b = (0, b, ba) are constants. The

ordered velocity V, = (o, Vv kg’ Vi ) 1s determined from the relations

. (A—=AMa> b)ey (8)
N ( V)= () +- T i
_— (A= AN (>a)Va
(b 'l‘) (\ ") - (‘x b’ . }

With the aild of Relation (1) we willl determine the temperatures in
the directions a and ®

X .
Thau= o Ty, Ty== ry T (9)




5. We will examine a steady-state problem 1n a cylindrical sys-
tem of coordinates with two cylindrical coordinates € and Z. We will

determine the values @, Ay, and A, from the system of (4), assuming

Z
o= 1,

Let the magnetic field be longltudinal and the expdnent of the
+distribution function be linearly dependent on the Hamiltonian Cﬂ&),
and quadratically dependent on the azimuthal component of the total momen-
tum. If a uniform rotation of type k lons does not exist as a whole,
and on the column axils there are no pecullaritles (%.131 8 = 0,

1im rAa = 0), then dropping the index 8 from the azimuthal component
r-»0 3

of the vector potential, we will write the distribution function and
the density as .

fi= ne (r) Fy (pra. M Pty r) )
¢ (2.‘-“')’1'7" VT.‘ . ¥ *
: ('.r'A *
1 cry
n(r) = ——._.'_—’.:—_T—_)_-; cxp (—— im;)[?etmc?—o- “’ 5’_ ’ (10)
d

/
. P
1+ i

F, (Pl’!l ‘\rh Prs ’):—E V 1 +(;':-.')’ exp (_ —2.‘1_‘77;) X

. - Tr - r\? Q.A (;E:)’ ’}

X 1pia¥ T;p;—o—r" [1 -l-(;;) ] .‘f.-.-—;—m
o

In order that the plasma density at infinity be equal to zero
and the magnetic fleld be different from zero, we will consider the
constant ‘of integration essentially positlve and we will designate
it by r,’(o. With the aid of the distributlion function we will deter-
mine the average value of the azimuthal component of velocity (Vk)
of type k ions
-y - (1)

Ve==— A (' .

————

My l-0~('Tr.~)‘.



With the aid of Relation (1) we will determine the azimuthal tempera-
ture Tke( r)
T .

TH(’)"_'—(?'

i

(12)

6. The solution of the system of nonlinear equations .19 éssocia‘ted
with substantial mathematlical difficulties. However, in the case of
a sufficiently small density (nko—o 0) it is permissible to dis-
regard the space charges and curre'nts. Then the solution of system

(4) can be selected as
A=Hyg, =0~ (13)

where H 18 the constant magnetic field strength. Such_a selection
corresponds to the case where the density at the axls of symmetry
is maximum. Substituting (13) into (10) we will find the density
distribution )
'e;llr’)’

24"1-!'

3. (1%)

- (
n (f)= Aoy ’-——-“I. eXp("‘ "2,"”'"1 T
1+(;&) ‘ ¢ ')1+(é;)
With the determinatlion of macroscopic values we will calculate
integrals of type
’-‘(")5.[ (1"_::fit e ", t.E,;,,—‘,,-;(f‘—','i'—'-')' (13)
[} .

approximately for two limlting cases € >>1 and € >>1 . We will
designate by Qk the number of particles of type k entering into a
unit of column length and we will introduce into the examlination a

"minimal” thickness of 1on layer I‘k’ a larmor radius of 1ions Ri,

and a transverse heat veloclty Uk.

-~



:L;EQ_'. R Uy * __eH U.E,/%o . ( 16)

ng ' CETE LT h e

~We will determine with the aid of (14)-(16) the constants of 1ntegré-

tion rko

"

. 1

Ty ==

2=

ANy

L ’ A
(when & 5> 1), ’n=;%§';f(ﬁn- L1 ( 17)

Eliminating o from (15) we will find the expression for & .
=1L\ " 1 L\ '
a,_:(z_i’:)-(mn L.,> R} .,_;(27_2.%;) (e L < Ry) (18)
The case € > 1 (1.e.lk > R;) corresponds to a strong magnetic
field and to small heat velocities; the case g << 1(1i.e. L, <« R;}
is realized for weak magnetic fields and large heat velocitles. Using
relations (12), (14)~-(18), we will calculate the azimuthal temperature

Tﬁe averaged over the plasma column cross section.

Ti=Ty (ool > R3), T,y=(2 ﬁ;*.)’@,... t, < R}

Thus, 1f the longitudinal magnetic fleld 1s strong, then the
averaged azlmuthal temperature equals the radial. If the magnetic
field 1s small then the azimuthal temperature is significantly less
than the radial. Using Expressions (11), (14)-(18), we will calcu-
late the azimuthal current Ik which refers to a unit of column
length, and calculate the azimuthal velocity Vk averaged over the

column section.

\ R‘ . ‘..._ R.
I = V2= "Q,e,1, —L:— signe,, V,=V2 ELEN L:' signw, (L, > R}),

- (19)
I =)/;- Q. u, siznw,, V, = V? uysigne, (L, <R}).

-11-



COnsequentlyf if the magnctic field 1s small then the ;veraged
ordered velocity 1s close to the heat velocity, and the current is
proportional to the product of the number of particles times the
heat velocity. With strong magnetic fields, the velocities of
ordered movement are small compared with heat velocities (the magnetic
‘field "freezes" the degrees of freedom) and the azimuthal current is
found to be inversely proportional to the magnetic field strength.

7. We will set the temperatures and space currents of all types
of ions as equal to zero, and we will consider the space current at
each point as compeﬁsated. Then the electron distribution will
be determined by the magnetic fleld, temperature, etc. In connec-
tion with this, the first and third equations of System (%) are
satisfied i1denticzlly, and the second in the case of the distribution

function of type (10) takes the form

L LI | '
n Ny Ry (] LAY A
J-.:"Q“'J' 20, Qs =] "'(ro) * B“cr.v’iﬁ' (20)

If the acimuthal component of the vector potential vanishes at
the axis of symmetry, then close to the column axis (when (;S )2 K))
the approximate sclution of the equation in (20) has the form

B= ot 1T 1~ (21)

. (RIS )
17r\ [ e“riHy Q
3 (7;) (—4. 2uc’mnT ﬁ)]l e

With the ald of (16), (17) we carry out the analysis of Solution
(21) in which the first term corresponds to a uniform magnetic field.
If the thickness of the plasma layer 1s less than the Larmor radilus
(L << R*), then the additional terms are small compared to the first
term with the fulfillment of the inequalities

-12-




. [ Ay
r L 4=
L <zi n.,:r‘] .
If the Larmor radius is small compared with the thickness of the

plasma layer (L >> R*), then the additional terms are small under
‘the following condltions

s (BT

Thus, the approximation is found to be satisfactory only inside
the plasma layer. The limits in which this approximation 1s valid
are wider, the stronger the magnetic fleld, the lower the temperature
and the less the density. The solution in (21) takes into account,
in the form of terms of a higher order with respect to.radius,
the honlinear effects associated with the influence of characteristic
plasma currents on the magnetic fleld and distribution of density.
With sufficlently large radii, the magnetic fleld is uniform and solu-
tions examined in a previous paragraph are satisfactory.

8. Let the temperatures of all types of ions be small compared
with the electron temperature. 1In the case of small density
(R0, ¢ =0, A=40, using relations (11), (12), (1¥)-(17), we
will obtaln_ the expressions for the average value of the azimuthal
component of velocity V, azimuthal temperature Te(r) and electron

density n(r);
2:?.(-»R'r’

= ot = 7 H —aign (Rg—
V= JRE h= T vaaaa s=27elen,
(==l exp | — .__"_""______ (22)
Vi stk 2(L' 4::I.R:r’)] *

If the Lauvaor radlus of electrons 1s large compared with the thick-

ness of the plasma layer, then when r ~ L the:denslty 1s signifilcantly

-13-



less than at the axis. When L r R, the density of plaéma'is
small, but the number of particles in this layer is large. At a
sufficlently large distance from the axis of symmetry the number ot'
particles 1s very small, )

If the Laymor radius 1s small compared with tﬁ?Léhickness-ot the
‘plasma layer, then from (22) it follows that closeégé the axis the
density 1s almost conatant. When r ~ L the denslty sharply decreases
so that at great distances from the axls there are few particles.
Consequently with a fixed electron temperature the column has a
sharp boundary at sufficiently strong magnetic fields.

9. In the study distribution functions depending only on
integrals of symmetry W, P2, Pa are examined. Not diminishing the

generallity, the distribution function can be taken as exponents
J=/,exp S(¥%, Py, P).

The analogy of entropy S artibrarily depends on the integrals of
symmetry. In the general case, in a sufficlently small neighborhood
of any nonsingular point (Mg, P20, Pao) the value S can be presented

as a Taylor series

S= 3 ey (7 — H) (Py— PuY (Py— Pal-
4 ! ]

If the physical conditions of the problem are such that the
fundamental contribution to the value S 13 made by a terms of a
lower order [in the general case — in a sufficlently small
neighborhood of a nonsingular point (#o, P20, Pao) ], then, having
eliminated terms of higher order, we will obtaln for S an expression
in the form of a certain polynomial with respect to the Hamiltonian
and momenta. In the cases examined in this study, the polynomial

1linearly dcpends on the Hamiltonlan and 1s a linear or quadratile

FOO-T0-63-373/ 14244 -1%-




function of momenta. With respect to its formal indication such a '
distribution functlon is close to Maxwellian,
In the case of linear dependence of S on momenta, the tempera-
ture 1s constant, uniform and isotropic. Generalized velocitles
are constant, components of linear velocity are proportional tq.
«corresponding Lame's coefficlents and do not depend on elect;ical or
magnetlc potentials. The ordered movement of each of the types of
ions occurs as a movement of a solid. 1In a Cartesian system of
coordinates thls case corresponds to interpenetrable plasma globs
whose ordered Qelocities are constant, and in a cylindrical system
it corresponds to plasma globs moving along the axis of symmetry
with constant velocities and rotating with constant angular velocities
In the case of a quadratic dependence on momenta, the tempera-
ture, generally speaking, 1s anisotropic and evidently.does not
depend on electrical and magnetic potentials. 1In a Carteslian system
of coordinates thr temperature is constant and uniform and in a
curvilinear system depends on Lame's coefficients. Constahts,
characterizing the plasma state, enter into the expressions for
temperature and velocity. The velocities are llinear functions of mag-

netic potential and depend on Lame's coefficlents.
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